Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response.

نویسندگان

  • Chen Wang
  • Craig Skinner
  • Erin Easlon
  • Su-Ju Lin
چکیده

Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response. 14-3-3 proteins are highly conserved chaperone-like proteins that play important roles in many cellular processes. bmh1Delta-induced heat resistance and CLS extension require the general stress-response transcription factors Msn2, Msn4, and Rim15. The bmh1Delta mutant also displays a decreased reactive oxygen species level and increased heat-shock-element-driven transcription activity. We also show that BMH1 genetically interacts with CR and conserved nutrient-sensing TOR- and PKA-signaling pathways to regulate life span. Interestingly, the level of phosphorylated Ser238 on Bmh1 increases during chronological aging, which is delayed by CR or by reduced TOR activities. In addition, we demonstrate that PKA can directly phosphorylate Ser238 on Bmh1. The status of Bmh1 phosphorylation is therefore likely to play important roles in life-span regulation. Together, our studies suggest that phosphorylated Bmh1 may cause inhibitory effects on downstream longevity factors, including stress-response proteins. Deleting Bmh1 may eliminate the inhibitory effects of Bmh1 on these longevity factors and therefore extends life span.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress.

Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required...

متن کامل

The GCKIII Kinase Sps1 and the 14-3-3 Isoforms, Bmh1 and Bmh2, Cooperate to Ensure Proper Sporulation in Saccharomyces cerevisiae

Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental program initiated in response to nutritional deprivation. Sps1, a serine/threonine kinase, is required for sporulation, but relatively little is known about the molecular mechanisms through which it regulates this process. Here we show that SPS1 encodes a bona-fide member of the GCKIII subfamily of STE20 kinases, both ...

متن کامل

Regulation of transcription by Saccharomyces cerevisiae 14-3-3 proteins.

14-3-3 proteins form a family of highly conserved eukaryotic proteins involved in a wide variety of cellular processes, including signalling, apoptosis, cell-cycle control and transcriptional regulation. More than 150 binding partners have been found for these proteins. The yeast Saccharomyces cerevisiae has two genes encoding 14-3-3 proteins, BMH1 and BMH2. A bmh1 bmh2 double mutant is unviabl...

متن کامل

The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53.

In this study, we mutated autophosphorylation sites in Rad53 based on their conservation with previously identified autophosphorylation sites in the mammalian Rad53 ortholog, Chk2. As with wild-type Rad53, the autophosphorylation mutant, rad53-TA, undergoes Mec1/Tel1-dependent interactions with Rad9 and Dun1 in response to genotoxic stress. Whereas rad53-TA in vitro kinase activity is severely ...

متن کامل

Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.

Mutations in RAS2, CYR1, and SCH9 extend the chronological life span in Saccharomyces cerevisiae by activating stress-resistance transcription factors and mitochondrial superoxide dismutase (Sod2). Here we show that mutations in CYR1 and SCH9 also extend the replicative life span of individual yeast mother cells. However, the triple deletion of stress-resistance genes MSN2/MSN4 and RIM15, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 183 4  شماره 

صفحات  -

تاریخ انتشار 2009